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Abstract

First draft of the notes for session 0. Any feedback is appreciated as well as reporting
typos. Good references for the material presented here can be found in [1–5].
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The goal of this session is to get introduced to basic notions that will be used extensively in
gauge theory. By this I hope to establish some common ground so that we can start building
from there. While the material of this session should be familiar to the readers, as it is mainly
definitions and notation seen in undergraduate physics courses, it will be useful to revisit it as
conventions might be different to the ones typically used.
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Session 0

1 Crash Course in Mechanics

Let us consider an N -body system. These bodies live in a d−dimensional space Σ — i.e. a
manifold1 — called the configuration space. Each of the N bodies has a state in this space
given by parameters {q a

i } known as the generalised coordinates, where 1 ≤ i ≤ d labels each
of the components and 1 ≤ a ≤ N labels the body. We can define a generalised velocity in this
configuration space by taking a time derivative of the general coordinates

q̇ a
i =

dq a
i

d t
. (1)

We might call the quantity q a
i (t) the trajectory of body a in configuration space, where t ∈ [t0, t f ].

In this general setting we might introduce a function called the Lagrangian L[q a, q̇ a] = T−V
which is, in general, defined as the difference between the kinetic energy (T) and the potential
energy (V ). This allows us to define2 a functional called the action, namely

S [q(t), q̇(t)] =

∫ t f

t0

d t L(q, q̇) , (2)

as the integral over time of said Lagrangian with well-defined endpoints q0 = q(t0) and
q f = q(t f ). In short, the action takes as input a function of the generalised coordinates and
velocities, sums over configuration space and returns a number as output. The action is a
fundamental object in physics as it gives full control over the properties of the system under
study.

Principle of least action (or Hamilton’s principle)

The physical trajectory corresponds to an extremum of the action, meaning

δS [q, q̇]
δq

=
∂ L(q, q̇)
∂ q

−
d
d t
∂ L(q, q̇)
∂ q̇

= 0 , (3)

which yields the Euler-Lagrange equation of motion in configuration space.

One can see the Euler-Lagrange equation arising by considering a variation over the action

δS =

∫ t f

t0

d t L
�

q+δq, q̇+δq̇
�

−
∫ t f

t0

d t L
�

q, q̇
�

=

∫ t f

t0

d t δq
�

∂ L
∂ q
−

d
d t
∂ L
∂ q̇

�

= 0 , (4)

where the boundaries are fixed, meaning δq0 = δq f = 0. We then define the canonically
conjugate momentum (to q) as

p ≡
∂ L(q, q̇)
∂ q̇

, (5)

which allows us to re-express the Euler-Lagrange equation as

ṗ =
dp
d t
=
∂ L
∂ q

(6)

1A manifold is nothing but the generalisation of the familiar notion of curves and surfaces to arbitrary dimen-
sional objects. These generalised objects must satisfy the condition in that, at every point, they locally look “flat”
(or Euclidean). Hence, a d−dimensional manifold (or d−manifold for short) locally resembles ≃ Rd .

2In the following, for ease of notation, we suppress indices and introduce the action for a single particle and a
single generalised coordinate. This can be extended to the more general case by restoring labels.
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Newton from Euler-Lagrange

One can see that the above prescription reduces to Newton’s equation of motion in the ap-
propriate limit. For instance, should we consider a single test particle in a d−dimensional
configuration space with Lagrangian L(qi , q̇i) =

1
2 mq̇2

i − V (qi) . We find that the Euler-
Lagrange equations of motion (one for each generalised coordinate) are

mq̈i +
∂ V
∂ qi
= 0 , (7)

which we recognise as Newton’s equation of motion.

A particularly interesting instance of the previous general result is the case in which q(t)
does not explicitly appear in the Lagrangian, so L = L(q̇). The coordinate is then said to be
cyclic, and it immediately implies that ṗ = 0. Therefore, the conjugate momentum is constant
in time, it is conserved. This is nothing but a particularly simple case of the more general
notion of symmetry and as understood from Noether’s theorem, linking the presence of symme-
tries with conservation of physical quantities. We will see more on this in the future.

We are almost ready to take a break and observe the view from the top of the mountain.
All we need to do is define a new object, the — much beloved by physicists — Hamiltonian
H(q, p), which does not live in configuration space (q, q̇), but in phase space (q, p), i.e. in a
different manifold that we can call Σ̃. The Hamiltonian for a single particle is defined as a
Legendre transformation

H(q, p) =
d
∑

i=1

pi q̇i − L(q, q̇) , (8)

where we have assumed that Σ̃ is d−dimensional. In a rather loose sense, in physics, the
Hamiltonian is a measure of the energy of the system. In fact, in a lot of instances we can
write H = T + V without even bothering to go through the Lagrangian formalism. This is, in
fact what a great part of physicists do, in particular those who work with quantum mechanics.
In the more strict mathematical realm, the Hamiltonian is defined whenever time is a cyclic
coordinate and the system is closed. Correspondingly, there is energy conservation and the
Hamiltonian is identified as an energy function. In physics, we keep that intuition and inter-
pretation even regardless of the previous assumptions3.

Now, let us define two functions A(q, p) and B(q, p) living in phase space under the rule of
a Hamiltonian H(q, p). Then, we can define a Poisson Bracket between these two quantities as

�

A , B
�

P.B. ≡
�

A , B
	

P.B. =
∑

i

�

∂ A
∂ qi

∂ B
∂ pi
−
∂ A
∂ pi

∂ B
∂ qi

�

. (9)

From this definition we can observe that
�

qi , q j

	

P.B. =
�

pi , p j

	

P.B. = 0 , (10)
�

qi , p j

	

P.B. = δi j . (11)

3We just manage to run away with it and then find the way to make everything consistent. For instance, in
statistical mechanics we play with different ensembles not necessarily conserving energy. In quantum mechanics
we play with non-unitary evolutions and extend the formalism accordingly.
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This is known as the canonical structure. Also, recalling that q = q(t) and p = p(t), we see
that

dA
d t
=
∑

i

�

∂ A
∂ qi

∂ qi

∂ t
−
∂ A
∂ pi

∂ pi

∂ t

�

=
∑

i

�

∂ A
∂ qi

∂ H
∂ pi
−
∂ A
∂ pi

∂ H
∂ qi

�

=
�

A , H
	

P.B. . (12)

It immediately follows that if
�

A , H
	

P.B. = 0, then A(q, p) is a conserved quantity or a symmetry
of the system.

At this point, life is good! We have a good control over our system. In other words we can:

• Study symmetries at a formal level and check which quantities are conserved. We can
also track symmetry breaking when playing with the free parameters of our theory.

• We can find the spectrum of our system, i.e. ground states and excitations by studying
the Hamiltonian. For instance, in a many-body system, we can study phases of matter
and their properties. Or in an error correction context we can find the codewords and
errors of the code.

• We can study the propagation of the system, e.g. kinematics and dynamics, through
Euler-Lagrange equations of motion and their solutions.

• We can study the statistical mechanical properties and thermodynamics of the system by
computing the partition function as Z(β) = Tr

�

e−βH
�

for β > 0. Typically β = 1/(kB T )
but it can be a different parameter, for instance (imaginary) time.

My first quantisation

We can also quantise our system through a canonical quantisation protocol based on
making the replacements:

qi , pi −→ q̂i , p̂i and
�

qi , p j

	

P.B. = δi j −→
�

q̂i , p̂ j

�

= iħhδi j . (13)

Here, notation A → Â denotes A, being a variable, becoming an operator-valued. Thus,
generalised coordinates and their canonically conjugate momenta are replaced by non-
commuting operators. This is, Poisson brackets are replaced by commutators defined as
[Â , B̂] ≡ ÂB̂ − B̂Â. We can also define a “quantum” version of Eq. (12) which we write
as

iħh
dÂ
d t
=
�

Â, Ĥ
�

, (14)

which is known as Heisenberg’s equation of motion and describes the evolution over time
of an observable Â in the so-called Heisenberg picture of Quantum Mechanics.

2 Index Notation is Superior

So far we have been dealing with generalised coordinates {qi} . It is natural in physics to think
of the concrete scenario in which these parameters are position coordinates, meaning qi = x i .
We organise these coordinates in vectors x= (x1, x2, . . . , xd) for more compact notation. Then,
for a given problem, we make a choice of coordinates, e.g. in 3-dimensional Euclidean space
we use cartesian x = (x , y, z), spherical x = (r,θ ,ϕ) or cylindrical x = (ρ,ϕ, z) coordinates
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amongst others.

Furthermore, it is often the case that time is considered as an additional coordinate that
we can add to the previous position vector. We then move from a space manifold description
to a spacetime manifold. Notation generalises accordingly as

x ≡ xµ = (c t,x) = (x0, x i) = (x0, x1, x2, . . . , xd) , (15)

where c is a (universal) constant, namely the speed of light, so that x0 = c t has units of
Length. In certain circles, this new vector xµ is known as the D−position. For the rest of the
lectures we will suppress this constant, i.e. work in units such that c = 1. We observe that the
spacetime vector x has now D = d +1 spacetime components for d space(-only) components.
Therefore, we will refer to systems living in (d + 1)D spacetime dimensions, d of which are
space-like and 1 is time-like.

The above notion can be extended for most physically relevant quantities. For instance,
we can define the D−momentum

p ≡ pµ =
�

1
c

E,p
�

= (p0, pi) = (p0, p1, p2, . . . , pd) , (16)

where E is the energy of the system. We can also define the spacetime (partial) derivative

∂µ ≡
∂

∂ x µ
=
�

1
c
∂

∂ t
,∇
�

=
�

∂

∂ x0
,
∂

∂ x i

�

= (∂0,∂i) ; (17)

or a D−vector function of position

Aµ(xα) =
�

A0(xα), Ai(xα)
�

=
�

A0(x0, x1, . . . , xd), Ai(x0, x1, . . . , xd)
�

(18)

as well as plenty of other objects. Now, there are several important remarks in using index or
tensor notation. The first is identifying greek indices as spacetime labelsµ,ν,λ,α, · · · ∈ [0, . . . , d],
while latin indices are used for space labelling i, j, k, l, · · · ∈ [1, . . . , d]. Another important as-
pect is observing that sometimes quantities have “up” indices (e.g. xα), known as contravariant
quantities (or simply up); and some have “down” indices (e.g. xα), known as covariant (or
simply down). Whether indices are up or down matters! In fact, there are rules to raise or
lower indices. We must contract4 indices with the metric gµν(x). The metric is a rank−2 sym-
metric tensor with real eigenvalues — don’t ever quote me on this, but it is essentially a real
square matrix — that encodes the geometry of a spacetime manifold. It is defined by

ds2 = gµν(x) d xµd xν , (19)

where ds is the line element or infinitesimal displacement vector in a given space. The metric
also satisfies property gµνgνλ = δλµ , which essentially tells you how to take the inverse of the
metric.

It is usually implicitly assumed, when working with vectors, that we are in flat space, this
is d−dimensional Euclidean space Σ, which is locally Σ ≃ Rd . The metric corresponding to

4Contracting indices means that we match up-down indices and we sum over them, so that we ob-
tain a scalar. For instance, given quantities Aµ and Bν, we might contract indices of A with B by taking
AµBµ = AµBµ ≡

∑d
µ=0 AµBµ = A0B0 + A1B1 + . . . Ad Bd . It is a convention, known as Einstein’s sum convention,

to not write the sum, but implicitly assume it every time we contract indices.
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such a manifold is rather simple, it is gi j = δi j = diag (+1,+1, . . . ,+1) = Id×d . Lowering (or
raising) indices in this particular case amounts to performing

x i = g i j x j = δ
i j x j = x i , (20)

which is a triviality. So, when dealing with vectors, we usually do not care about whether in-
dices are up or down. However, when the space is not flat (or Euclidean) and/or we are dealing
with spacetimes , we do care! Flat spacetime is not, strictly speaking, Euclidean space5. In-
stead, it is called Minkowski spacetime (manifold) and is locally M D ≃ R1,d as it incorporates
time. It is parametrised by the Minkowski metric denoted as ηµν, which corresponds to the
case

gµν = ηµν = (−1,δi j) = diag (−1,+1,+1, . . . ,+1) . (21)

Hence, we see that

xµ = ηµνxν = (η
00 x0,η11 x1,η22 x2, . . . ,ηdd xd) = (−x0,+x1, . . . ,+xd) = (−x0, x i) . (22)

as non-diagonal elements of the Minkowski metric vanish. This, of course, is a rule that has to
be followed not only for positions x but, for any vector in spacetime. We can check explicitly,
for instance, that pµ = −iħh∂ µ. Notice also that the general notions of scalar products, vector
products, gradients, curls, etc. that we learn in undergraduate calculus now generalise. In
particular it is useful to make use of the Levi-Civita symbol εµνλα... which takes the value +1
whenever indices are ordered as

ε0123... = −ε0123... = +1 (23)

or there is an even permutation of indices. If indices are permuted an odd number of times, it
acquires the value ε1023... = −1 and, when there are repeated indices it has value ε0112... = 0 .

Why bother ?

At this point we might wonder why should we even care about more sophisticated no-
tation if we do not necessarily work with fancy curved spacetimes. There are several
reasons why this is still a very useful notation:

• It is both extremely compact and general.

• It is natural once you learn the basic rules.

• It allows you to incorporate time naturally in the formalism without giving it any
special treatment.

• It is much more intuitive for observing geometric, topological and dimensionality
structures.

Let us write Maxwell’s equations in the presence of sources in index notation. This is
just

∂ν Fµν = Jµ and ∂ν F̃µν = 0 . (24)

5You can also say it is a Euclidean space with Lorentzian signature, which can be turned into Euclidean signature
by means of a Wick rotation t = −iτ, essentially turning time into a space-like coordinate, thus Euclidianising
Minkowski’s space. This also allows to connect statistical mechanics with quantum mechanics. For now, though,
we will not do imaginary-time magic and will stay in the Lorentzian signature.
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Doesn’t it look much more compact and graceful than the usual vector identities that
come to mind when we think about Maxwell’s equations? The attentive reader can start
to see some resemblance between the two equations in Eq. (24). We will explore this
in the future.

With regards to the latter bullet point of the list, even in plain Euclidean space, try
to compute the following quantity ∇ × B in 2d, 3d and 4d, using conventional vector
notation or index notation. We see that in index notation we can make use of contraction
of indices to get intuition on the type of object resulting from such a product. More
explicitly,

d = 2 : εi j∂iB j = φ (scalar quantity) , (25)

d = 3 : εi jk∂ jBk = φ
i (vector quantity) , (26)

d = 4 : εi jkl∂kBl = φ
i j (tensor quantity) . (27)

In other words, dimensionality is linked to the number of indices. Also, vector calculus
becomes a game of matching and counting indices, so complicated vector identities arise
naturally using this language.

The link with gravity as devised by Einstein here is also straightforward. Einstein’s equa-
tions for General Relativity are nothing but Euler-Lagrange equations where the generalised
coordinate(s) qi(t) are replaced by the spacetime metric gµν(x). In other words, solving the
(Einstein’s) equations gives the explicit form of the metric gµν(x) as solutions. In the trivial,
flat case, the solution is the Minkowski metric. A slightly non-trivial spherically-symmetric
case is that of a static black hole, known as the Schwarzchild metric solution. The interested
reader is referred to Appendix 4.2 for more details.

3 What is a Field?

A field is a physical quantity that has a value at each point of some parametric space. Typically
this parametric space is spacetime. We can classify fields according to different criteria, most
of them partially overlapping, but that provide intuition about the type of object we are dealing
with. For instance, fields can be:

• Scalar, vectorial, spinorial or tensorial quantities amongst others.

• Elements of a group G, being this group the real numbers R, complex numbers C, angles
or phases S1, Integers Z modulo n, etc.

• Classical or quantum in that they are functions or operators.

• . . . Other criteria.

In a more mathematical stance, we say that fields are maps φ : Σ −→ Σ̃ so that the field φ
has an input variable, typically x , that lives in Σ, and the image, typically φ(x), lives on the
space Σ̃. This is a very natural and yet general notion that we will make continuous use of, so
it is worth discussing basic examples that allow us identify, classify and manipulate fields in
physics. For instance:

7



3.1 Field Strength Session 0

• The position x (t) ∈ Rd is a real, d−dimensional classical, vector field on a (one-dimensional)
time manifold.

• The wavefunction ψ(xα) = ψ(t,x) ∈ C is a classical, complex-valued, scalar field on a
D−dimensional spacetime manifold.

• The temperature T (x) ∈ R+ is a classical, positive-real, scalar field on a d−dimensional
space manifold.

• The metric gµν(x) ∈ RD×D is a classical, real-valued, tensorial field on a D−dimensional
(pseudo-Riemannian) spacetime manifold.

• The electric field E (xα) ∈ Rd (or Ê (xα) ∈ F+) is a classical (or quantum), real-valued
(or Fock-bosonic-valued), d−dimensional vector field on a D−dimensional spacetime
manifold.

• People in “quantum gravity” look for a well-defined object ĝµν(x) that is the quantum
version of the spacetime metric (field).

A particularly interesting object, which will be the subject of this course, is the field

Aµ(xα) = Aµ(t,x) = (A0(x), Ai(x)) = (ϕ,A) ∈ RD . (28)

This is an example of an (Abelian) gauge field. For now, we see it is a classical, real-valued,
D−dimensional vector field on a D−dimensional spacetime manifold. In (3+ 1)D and in the
context of electromagnetism, we identify Aµ as the 4−vector potential, ϕ is known as the scalar
potential and A is known as the magnetic vector potential. For us, Aµ(x) will just be called a
classical gauge field.

A word of Caution: Electric and Magnetic fields don’t exist!

In these notes we will want to detach from the idea of vector potentials being defined in
terms of electric and magnetic fields. We will work under the assumption that electric
and magnetic fields are not defined (until we say so). In other words, we will define
them in terms of Aµ and not the other way around. We will see this is much more
powerful and natural.

To some extent this is analogous to stating that the wavefunction ψ(t,x) is the funda-
mental building block for quantum mechanics and not the amplitudes or probabilities,
which are the actual measurable (physical) outcomes. So bear with me, and assume
electric and magnetic fields do not exist (yet)!

3.1 Field Strength

Whenever we have fields, we can define a field strength as the magnitude of a field. For a vector
field, this is typically a generalised sense of the “modulus” of a given quantity or, more infor-
mally, “how long is the arrow of the vector”. Examples of this are the wind speed — being, let’s
say 30km/h — for a given x in spacetime. Another example is the (normalised) probability
|ψ(x)|2 = 0.3 (for instance).

In the case of a gauge field, computing its field strength can be found by finding the curva-
ture 2-form of an (Abelian gauge) connection 1-form. This is, defining the object A≡ Aµd xµ,

8



3.1 Field Strength Session 0

we compute the object F = dA= Fµν d xµ ∧ d xν. We will need a bit more advanced maths to
see where this all comes from6, we will see this in future sessions. The point here is that we
can construct an object called the curvature7 or field strength of the gauge field which has the
form

Fµν(x)≡ ∂ µAν(x)− ∂ νAµ(x) . (29)

The construction of this object is purely based on geometry, without any physical input. It
just so happens that this object has the same form as the well-known electromagnetic (field-
strength) tensor. It is only now that we can observe that the tensor is antisymmetric, with
F00 = ∂ 0A0−∂ 0A0 = 0 and F ii = ∂ iAi−∂ iAi = 0, but F0i = ∂ 0Ai−∂ iA0 ̸= 0 and F i j = ∂ iAj−∂ jAi ̸= 0
for i ̸= j. Hence, we define the electric and magnetic fields as non-zero components of the
field strength, namely

F0i ≡ E i = E (30)

and

F i j ≡ εi jkBk , so Bi =
1
2
εi jkF jk ≡ B (31)

We can easily express these definitions in components as

E≡ F0i = ∂ 0Ai − ∂ iA0 = −∂0Ai − ∂iA
0 = −

∂

∂ t
A(x)−∇ϕ(x) (32)

and

B≡
1
2
εi jkF jk =

1
2

�

εi jk(∂ jAk − ∂kA j)
�

=
1
2

�

2εi jk(∂ jAk)
�

=∇×A(x) . (33)

We have defined electric and magnetic fields as certain components of the field strength of an
underlying gauge field Aµ.

Gauge invariance

A crucial property of the field strength Fµν is that it is gauge invariant, i.e. unchanged
under local transformations, also known as gauge transformations. Gauge transforma-
tions are parametrised by a unitary and invertible matrix U(x), which is much more
restrictive than usual global symmetries merely acting on the system as a whole. For an
Abelian gauge group U(1), the form of the matrix is U(x) = exp [iξ(x)] , where ξ is a
real function. Thus, the gauge field locally transforms according to

Aµ (x) −→ A′µ (x) = U(x)Aµ(x)U−1(x) +
i
g
U(x)∂µU−1(x) , (34)

where U−1(x)U(x) = Î and g is the coupling constant, typically the electric charge. This
expression reduces to

A′µ (x) = Aµ(x) + g−1 ∂µ ξ (x) (35)

for this particular Abelian case. Notice Aµ and A′µ correspond to different configurations
of the same physical system, the same equivalence class, meaning there is an intrinsic
gauge redundancy or freedom to choose any of them. For practical computation and
manipulation it is often necessary to choose one of these configurations to work with.

6Here this new notation is called differential form notation or p−form language, which is a slightly more modern
and sophisticated evolution of index notation. It is used in exterior calculus and it becomes very geometrically
intuitive. The object d is an exterior derivative, while ∧ constitutes the so-called wedge product.

7Yes, it is the same curvature as in curved spacetime from Einstein or curvature as in that of a sphere.
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3.2 Constructing an Action Session 0

That is called gauge fixing or choosing a gauge. Once again, it is important to stress that
choosing a gauge, like choosing a preferred system of coordinates, cannot affect the
Physics, only make it more or less obscure.

Exercise. Use Eq.(35) to show that the field strength is gauge invariant, i.e. Fµν = F ′µν .

3.2 Constructing an Action

A physical theory can be defined as an adequate action principle representing the system un-
der study. This is, constructing a Lagrangian density L that is a function of relevant fields and
that, when integrated over the appropriate variables, returns a number. If the action has as
inputs S [Aµ,∂ν Aµ] =

∫

dD x L it is known as a gauge (field) theory. The action must be gauge
invariant so that it can return a single number as output. Otherwise, the action would depend
on an arbitrary choice of the (local) gauge function ξ(x), which is not physical8. In addition,
we want all the possible indices to be contracted as the Lagrangian density is a scalar quantity.
Finally, we want this action principle to be as simple as possible, meaning we want the minimal
number of fields and derivatives involved9.

From the previous discussion we have found a gauge-invariant and physically relevant
quantity, the field strength. So constructing an action based on the field strength ensures gauge
invariance. A possible choice for a Lagrangian density could be Fµµ , but this is identically zero
by construction. The next-order options are FµνFµν and Fµν F̃µν = 1

2ε
µνλαFµνFλα, both yield-

ing a scalar as all indices are contracted. The former construction corresponds to Maxwell’s
theory of electromagnetism, while the latter is known as the theta term (or the related concept
of axion electrodynamics). We will study the effect of the theta term in future sessions, as well
as another interesting term known as the Chern-Simons term, namely εµνλAµFνλ . Regarding
the former construction, adding a constant in front, yields classical electromagnetism as the
simplest consistent theory for an Abelian gauge field

SM =

∫

dD x LM = −
1
4

∫

d t ddx Fµν Fµν (36)

Exercise. From Maxwell’s action (36), find the inhomogeneous Maxwell’s equations in
vacuum ∂ν Fµν = 0 and write them in vector notation. Find the homogeneous Maxwell’s
equations from ∂ν F̃µν ≡ 1

2ε
µνλα∂νFλα = 0.

Can you add the presence of an electric source Jµ = (J0, J i) = (ρ,J) to the inhomoge-
neous equations, where ρ is a charge density and J is an electric current density? Can
you add now the presence of a magnetic source J̃µ = (J̃0, J̃ i) = (ρ̃, J̃) to the homoge-
neous equations?

8This is as if the physical content of a theory was dependent on the system of coordinates used. We might
have a preferred system of coordinates, but the physical properties cannot depend on the choice of coordinates.
Analogously, a theory cannot depend on the preferred choice of gauge, i.e. of the function ξ(x).

9There are Renormalisation Group (RG) arguments that make this qualitative remark more concrete and formal,
but they are not simple. The general argument is that simpler terms tend to dominate while nonlinearities or high
many-body terms tend to be non-dominant.
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4 Bonus*: Canonical Schrödinger and Maxwell

4.1 Canonical Quantisation of the Schrödinger Field

From a field theoretic perspective, the Schrödinger field is a non-relativistic, complex, scalar
field. In the following, we will also assume it is bosonic, although a fermionic treatment would
be analogous. The starting point of the canonical treatment consists on defining an action

S =

∫

d t ddx L
�

Ψ,Ψ†
�

=

∫

d t ddx Ψ†(t,x)
�

Ê −
p̂2

2m
− V̂ (x)
�

Ψ(t,x) (37)

which we will extremise. According to first quantisation, the energy operator is Ê = iħh∂t ,
while momentum is given by p̂= −iħh∇. Extremisation of the action with respect to Ψ yields

δS
δΨ
=

δL
δΨ(x)

− ∂µΠ
µ
Ψ(x) = 0 , (38)

where we have used the notation x ≡ xµ = (t,x) and defined the canonically conjugate
momentum to Ψ as

Π
µ
Ψ(x)≡

δL
δ
�

∂µΨ(x)
� . (39)

After integrating by parts, with appropriate boundary conditions, we find the Lagrangian den-
sity

L= iħhΨ†(x)∂tΨ(x)−
ħh2

2m
∇Ψ†(x) ·∇Ψ(x)− V (x)Ψ†(x)Ψ(x) (40)

The Hamiltonian density can then be found as H = Πt
Ψ(x)∂tΨ(x)−L , yielding the field theo-

retical Hamiltonian

H =

∫

ddxH =
∫

ddx
ħh2

2m
∇Ψ†(x) ·∇Ψ(x) + V (x)Ψ†(x)Ψ(x) =

1
iħh

∫

ddxΠt
Ψ(x)HQM Ψ(x)

(41)
where HQM denotes the usual quantum-mechanical Hamiltonian density. Canonical quanti-
sation follows from postulating that a given field and its canonically conjugate momentum
satisfy

�

Ψ̂(x), Ψ̂(x ′)
�

∓
=
�

Π̂t
Ψ(x), Π̂

t
Ψ(x
′)
�

∓
= 0 (42)

�

Ψ̂(x), Π̂t
Ψ(x
′)
�

∓
= iħhδ(D)
�

x − x ′
�

(43)

4.2 Canonical Quantisation of a Gauge Field

Exercise. From the Maxwell action in Eq.(36), find the Lagrangian and Hamiltonian den-
sities expressed in terms of the electric E and magnetic B fields. Construct the canonical
commutation relations and try to quantise electromagnetism. What happens?
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A Some comments on curved spacetimes

Getting familiar with the metric

The metric tensor g µν(x) is not an exotic object, it is just a reformulation of things that
we already know. Let us review a couple of examples.

Flat 3d Euclidean Space. Real space is parametrised as

ds2 = d x2
1 + d x2

2 + d x2
3 . (A.1)

This is, the metric is diagonal with components g11 = +1, g22 = +1 and g33 = +1. In
summary, we find gi j = δi j

The 2-sphere. The usual way to parametrise points in a regular sphere is using spher-
ical angular coordinates, so x i = (θ ,ϕ). The line element is

ds2 = dθ2 + sin2 θ dϕ2 . (A.2)

Thus, the metric is diagonal with only two non-zero elements g11 = +1 and g22 = sin2 θ .

Schwarschild Black Hole and Rindler Observer. The Schwarzschild metric is as
spherically symmetric solution of Einstein’s equations for an empty universe (Tµν = 0)
and has the form

ds2 = − f (r) d t2 +
1

f (r)
dr2 + r2 dΩ2

D−1 , (A.3)

where f (r) = 1−M wd
rd−2 , and

wd =
16πGN

(d − 1)Vol (Sd−1)
(A.4)

is essentially a volume factor. For instance, for a one-dimensional Vol (S1(R)) = 2πR,
two-dimensional Vol (S2(R)) = 4πR2 or, more generally, (d − 1)-dimensional
Vol (Sd−1(R)) = R d−1Vol (Sd−1) sphere with Vol (Sd−1) = 2πd/2/Γ (d/2).

For D = 3+1 this solution reduces to f (r) = 1− 2MGN
r , and the Schwarzschild radius

is defined as rs = 2MGN . More generally, we can consider that f (r) has some root at
r̃ so that f (r = r̃) = 0 and the metric blows up. This coordinate singularity defines
an (event) horizon. We can study the near-horizon limit of the metric by considering
r = r̃ + ε for ε≪ 1. We can then Taylor expand to first order

f (r)|r→r̃ = f (r)|r=r̃ + f ′(r)|r=r̃ (r − r̃) + . . . , (A.5)

but the zeroth order of the expansion vanishes identically by definition. Hence the near-
horizon metric becomes

ds2 ≈ ds2
nh = − f ′(r̃) (r − r̃) d t2 +

dr2

f ′(r̃) (r − r̃)
+ r̃2 dΩ2

D−1 . (A.6)

12
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From here we can define the surface gravity as κ ≡ f ′(r̃)/2, substitute it and apply the
change of variables

dρ2 =
dr2

2κ (r − r̃)
(A.7)

from which we can take the square root and integrate to find

ρ =
1
κ

Æ

2κ (r − r̃) . (A.8)

Thus, the near-horizon metric becomes

ds2
nh = −(κρ)

2 d t2 + dρ2 + r̃2 dΩ2
D−1 . (A.9)

These are the so called Rindler coordinates, which describe a Minkowski spacetime frome
the point of view of a (Rindler) observer moving at an acceleraction κwhich, in this case,
corresponds to the surface gravity of what can be a black hole. In fact, one can transform
back into Minkowski space via the change

T =
1
κ
ρ sinh (κt) (A.10)

R=
1
κ
ρ cosh (κt) (A.11)

so that the metric is re-expressed as

ds2
nh = −dT2 + dR2 + r̃2 dΩ2

D−1 . (A.12)

Hence, we have seen that Rindler is the near-horizon limit of Schwarzschild.

FLRW Universe. For an isotropic, homogeneous and expanding universe we have

ds2 = −d t2 + a(t)2
�

1
1− kr2

dr2 + r2dΩ2
2

�

, (A.13)

where k is a curvature parameter and a(t) is the expansion parameter of the Universe.

Gravitational waves. We can write the metric for gravitational waves as a small dis-
turbance g̃ µν over a background metric hµν

gµν = hµν + g̃µν . (A.14)

General Relativity in a Nutshell

This box is a lightning review of General Relativity. Einstein observed:

• Gravity is Spacetime Geometry.

• Matter Sources Gravity.

Based on the above, one can propose the principles:

13
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• Principle of General Relativity: All laws of Physics take the same forms in any coor-
dinate system.

• Principle of Equivalence: There exists a coordinate system in which the effect of
a gravitational field vanishes locally, i.e. an observer in free fall does not "feel"
gravity. In other words, an inertial mass is indistinguishable from a gravitational
mass. Hence, gravity is locally indistinguishable from acceleration.

General Relativity describes the dynamics of spacetime geometry encoded in a metric
tensor gµν(x) . It can be formulated from an action principle of the form

SEH =
1
κD

∫

dD x
Æ

|g|
�

R+Lmatter

�

, (A.15)

known as the Einstein-Hilbert action in the presence of matter. The constant
κD = 16πGD

N = 2 m−2
p is introduced to recover the Newtonian limit, where GD

N is the
Newton’s constant in the corresponding dimension and mp is the reduced Planck mass
in natural units. The Euler-Lagrange equations of motion for the metric are

Gµν ≡ Rµν −
1
2

gµν R=
κD

2
Tµν (A.16)

known as the Einstein’s field equations, which relate "curvature" on the l.h.s. to "energy"
on the r.h.s. of the equation. The Ricci curvature is given by

Rµν = ∂µΓ
λ
νλ − ∂λΓ

λ
µν + Γ

λ
µσΓ

σ
λν − Γ

λ
µνΓ

σ
λσ (A.17)

where the Christoffel connections are defined as

Γρµν =
1
2

gρσ
�

∂µgσν + ∂νgµσ − ∂σgµν
�

. (A.18)

The Ricci scalar is simply R≡ Rµν gµν. On the other hand, the symmetric (or Belinfante)
stress-energy-momentum tensor is

Tµν ≡ −
2
p

|g|
δSmatter

δg µν
. (A.19)

A free falling particle follows a curve known as a geodesic. The geodesic equation is

d2 x µ

d t2
+ Γµ

νλ

d x ν

d t
d x λ

d t
= 0 . (A.20)

Newton from Einstein

The Møller-Rosenfeld prescription for semiclassical gravity considers Einsteinian gravity
coupled to quantum matter. Due to the incompatibility of coupling classical spacetime
to operator-valued stress-energy-momentum tensor, one works with expectation values,
i.e. 〈T̂µν〉 ≡ 〈Ψ| T̂µν |Ψ〉. This averaging, of course, neglects quantum fluctuations from

14
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matter. The Einstein field equations become (we explicitly write c for convenience)

Gµν =
8πGN

c4
〈T̂µν〉 . (A.21)

Now we will consider both a non-relativistic and a Newtonian limits. This translates into
the following assumptions:

1. Weak gravitational field. Meaning

GN m
rc2
≪ 1 . (A.22)

In this limit, this allows for the expansion of the metric as nearly flat, in essence

gµν = ηµν + εhµν (A.23)

for ε≪ 1.

2. Source of gravitational field is mostly due to mass density.

|T i j|
T00

=
|T i j|
ρmc2

≪ 1 . (A.24)

3. Stress-energy-momentum (e.g. mass) sources move slowly.

v≪ c . (A.25)

This implies that time derivatives can be dropped.

Armed with this conditions we can see that for ε≪ 1 and |v i| ≪ 1 implies dt
dτ ≈ 1. Then,

the geodesic equation
d2 x µ

dτ2
+ Γµ

νλ

dx ν

dτ
dx λ

dτ
= 0 (A.26)

for µ= i and c = 1 reduces to

d2 x i

dt2
≈

d2 x i

dτ2
= −Γ i

νλ

dx ν

dτ
dx λ

dτ
= −Γ i

00 = −Γi 00 =
1
2
∂ih00 − ∂0hi0 =

1
2
∂ih00 ≡ ∂iφ ,

(A.27)

so we end up with Newton’s equation ẍ+∇φ = 0, with identification (restoring c) of
the Newtonian scalar potential as the time component of the metric h00 ≈ −

2
c2φ and

g00 ≡ η00 + εh00 ≈ −(1+
2φ
c2 ) . This allows us now to compute

G00 = R00 = Ri
0i0 + R0

000 = Ri
0i0 = −

∂ 2h00

∂ x i ∂ x i
=

2
c2
∇2φ (A.28)

=
8πGN

c4
〈T̂00〉=

8πGN

c4
〈ρ̂mc2〉=

8πGN

c2
〈Ψ|m |Ψ〉=

8πGNm
c2
|Ψ|2 . (A.29)

In summary, the Einstein field equations linearise and reduce to

∇2φ (t,x) = 4πm GN |Ψ(t,x)|2 (A.30)

in the non-relativistic Newtonian limit. This shows that the Gauss’s law that was previ-
ously discussed can be found from conventional Møller-Rosenfeld semiclassical gravity.
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